5

- deposited oxide (CVD oxide), fluoride doped silicate glass (FSG), phosphorous doped silicate glass (PSG), PE-TEOS, LP-TEOS, nitride and oxynitride;
- (c) forming a rough oxide layer overlaying said second dielectric layer;
- (d) etching through said second dielectric layer and silicon substrate to form multiple trenches in the isolation region by using said rough oxide as an etching mask;
- (e) removing said rough oxide and second dielectric layers, and then oxidizing said silicon substrate within said trenches to form a field oxide isolation region.
- 11. The method according to claim 10, wherein step (e) is first oxidizing said silicon substrate within said trenches to form a field oxide isolation region, and then removing said rough oxide and second dielectric layer.
- 12. The method according to claim 10, wherein said first dielectric layer is selecting from the group consisting of silicon dioxide nitride and oxide/nitride double layers.

6

- 13. The method according to claim 10, wherein said second dielectric layer has a thickness of about 50 to 150 Angstroms.
- 14. The method according to claim 10, wherein said rough oxide is composed of silicon dioxide formed with reactant gases of ozone and Tetra-Ethyl-Ortho Silicate (O₃-TEOS).
- 15. The method according to claim 14, wherein said O_3 -TEOS is deposited in an environment with ozone concentration greater than 4%.
- 16. The method according to claim 14, wherein said $\rm O_3\text{-}TEOS$ is deposited at a temperature range between 300° C. to 600° C.
- 17. The method according to claim 14, wherein said O_3 -TEOS is deposited at a pressure range between 300 to 760 Torr.
- 18. The method according to claim 10, wherein said trenches are about 2000 to 4000 Angstroms deep.

* * * * *